Mathematics and the real world

In this article the initial discussion of the untenability of the distinction between “pure” and “applied" mathematics is followed by looking at alternative approaches regarding the relationship between mathematics and the “real world” - with intuitionism and Platonism representing the two oppo...

Πλήρης περιγραφή

Αποθηκεύτηκε σε:  
Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Strauss, D. F. M. (Συγγραφέας)
Τύπος μέσου: Ηλεκτρονική πηγή Άρθρο
Γλώσσα:Αγγλικά
Έλεγχος διαθεσιμότητας: HBZ Gateway
Journals Online & Print:
Φόρτωση...
Interlibrary Loan:Interlibrary Loan for the Fachinformationsdienste (Specialized Information Services in Germany)
Έκδοση: 2000
Στο/Στη: Koers
Έτος: 2000, Τόμος: 65, Τεύχος: 1, Σελίδες: 95-121
Άλλες λέξεις-κλειδιά:B applied mathematics
B Infinity
B Platonism
B Intuitionism
Διαθέσιμο Online: Volltext (kostenfrei)
Volltext (kostenfrei)
Περιγραφή
Σύνοψη:In this article the initial discussion of the untenability of the distinction between “pure” and “applied" mathematics is followed by looking at alternative approaches regarding the relationship between mathematics and the “real world” - with intuitionism and Platonism representing the two opposite positions. The notions of infinity as well as the totality character of spatial continuity (and its implied infinite divisibility) turned out to occupy a central position in this context. In the final section brief attention is given - against the background of some perspectives on the history of mathematics - to an alternative approach in which both the uniqueness and the mutual irreducibility of number and space are conjectured.
ISSN:2304-8557
Περιλαμβάνει:Enthalten in: Koers
Persistent identifiers:DOI: 10.4102/koers.v65i1.466