Advances in Proof-Theoretic Semantics

Chapter 1. Introduction; Thomas Piecha & Peter-Schroeder-Heister -- Chapter 2. On Brouwer-Heyting-Kolmogorov provability semantics; Sergei N. Artëmov -- Chapter 3. Two Ways of General Proof Theory; Kosta Došen -- Chapter 4. Generalised elimination rules; Roy Dyckhoff -- Chapter 5. On the proof t...

Full description

Saved in:  
Bibliographic Details
Contributors: Piecha, Thomas (Editor) ; Schroeder-Heister, Peter 1953- (Editor)
Format: Electronic Book
Language:English
Check availability: HBZ Gateway
WorldCat: WorldCat
Fernleihe:Fernleihe für die Fachinformationsdienste
Published: Cham Heidelberg New York Dordrecht London Springer Open 2016
In:Year: 2016
Edition:1st ed. 2016
Series/Journal:Trends in Logic, Studia Logica Library 43
Springer eBook Collection
SpringerLink Bücher
Further subjects:B Logic, Symbolic and mathematical
B Computer Science
B Mathematical logic
B Machine theory
B Logic
B Philosophy
Online Access: Cover
Inhaltstext (Verlag)
Volltext (kostenfrei)
Parallel Edition:Non-electronic

MARC

LEADER 00000cam a22000002 4500
001 84392117X
003 DE-627
005 20240214180252.0
007 cr uuu---uuuuu
008 151214s2016 gw |||||o 00| ||eng c
020 |a 9783319226866  |9 978-3-319-22686-6 
024 7 |a 10.1007/978-3-319-22686-6  |2 doi 
035 |a (DE-627)84392117X 
035 |a (DE-576)9843921178 
035 |a (DE-599)GBV84392117X 
035 |a (OCoLC)944058741 
035 |a (OCoLC)930010696 
035 |a (ZBM)1331.03009 
035 |a (ZBM)1331.03009 
035 |a (EBP)040338398 
035 |a (DE-He213)978-3-319-22686-6 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
044 |c XA-DE  |c XA-CH  |c XD-US  |c XA-NL  |c XA-GB 
050 0 |a BC1-199 
072 7 |a HPL  |2 bicssc 
072 7 |a PHI011000  |2 bisacsh 
084 |a 1  |2 ssgn 
084 |a *03-06  |2 msc 
084 |a 03F03  |2 msc 
084 |a 03F07  |2 msc 
084 |a 03F55  |2 msc 
084 |a 03A05  |2 msc 
084 |a 00B15  |2 msc 
245 1 0 |a Advances in Proof-Theoretic Semantics  |c edited by Thomas Piecha, Peter Schroeder-Heister 
250 |a 1st ed. 2016 
264 1 |a Cham  |a Heidelberg  |a New York  |a Dordrecht  |a London  |b Springer Open  |c 2016 
300 |a Online-Ressource (VI, 283 p.) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
490 0 |a Trends in Logic, Studia Logica Library  |v 43 
490 0 |a Springer eBook Collection 
490 0 |a SpringerLink  |a Bücher 
500 |a Open Access 
506 0 |a Open Access 
520 |a Chapter 1. Introduction; Thomas Piecha & Peter-Schroeder-Heister -- Chapter 2. On Brouwer-Heyting-Kolmogorov provability semantics; Sergei N. Artëmov -- Chapter 3. Two Ways of General Proof Theory; Kosta Došen -- Chapter 4. Generalised elimination rules; Roy Dyckhoff -- Chapter 5. On the proof theoretic foundations of set theory; Lars Hallnäs -- Chapter 6. The choice of semantics as a methodological question; Wilfrid Hodges -- Chapter 7. The mode of presentation; Reinhard Kahle -- Chapter 8. Remarks on relations between Gentzen and Heyting inspired PTS; Dag Prawitz -- Chapter 9. Unification of logics by reflection; Giovanni Sambin -- Chapter 10. BHK and Brouwer's Theory of the Creative Subject; Göran Sundholm -- Chapter 11. Compositional semantics for predicate logic: Eliminating bound variables from formulas and deductions; William W. Tait -- Chapter 12. Intuitionism, the Paradox of Knowability and Empirical Negation; Gabriele Usberti -- Chapter 13. Explicit composition and its application in normalization proofs; Jan von Plato -- Chapter 14. A two-sorted typed lambda-calculus; Heinrich Wansing -- Chapter 15. Kreisel's second clause and the Theory of Constructions; Walter Dean & Hidenori Kurokawa -- Chapter 16. On Paradoxes in Proof-Theoretic Semantics; Yoshihiro Maruyama 
520 |a This volume is the first ever collection devoted to the field of proof-theoretic semantics. Contributions address topics including the systematics of introduction and elimination rules and proofs of normalization, the categorial characterization of deductions, the relation between Heyting's and Gentzen's approaches to meaning, knowability paradoxes, proof-theoretic foundations of set theory, Dummett's justification of logical laws, Kreisel's theory of constructions, paradoxical reasoning, and the defence of model theory. The field of proof-theoretic semantics has existed for almost 50 years, but the term itself was proposed by Schroeder-Heister in the 1980s. Proof-theoretic semantics explains the meaning of linguistic expressions in general and of logical constants in particular in terms of the notion of proof. This volume emerges from presentations at the Second International Conference on Proof-Theoretic Semantics in Tübingen in 2013, where contributing authors were asked to provide a self-contained description and analysis of a significant research question in this area. The contributions are representative of the field and should be of interest to logicians, philosophers, and mathematicians alike 
650 0 |a Philosophy 
650 0 |a Logic, Symbolic and mathematical 
650 0 |a Computer Science 
650 0 |a Philosophy 
650 0 |a Logic 
650 0 |a Mathematical logic 
650 0 |a Mathematical logic 
650 0 |a Logic 
650 0 |a Machine theory 
700 1 |e HerausgeberIn  |0 (DE-588)1081844205  |0 (DE-627)846736179  |0 (DE-576)454839138  |4 edt  |a Piecha, Thomas 
700 1 |e HerausgeberIn  |0 (DE-588)112409156  |0 (DE-627)691148244  |0 (DE-576)349874662  |4 edt  |a Schroeder-Heister, Peter  |d 1953- 
776 1 |z 9783319226859 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |t Advances in proof-theoretic semantics  |d Cham u.a. : Springer, 2016  |h VI, 283 S.  |w (DE-627)1617582190  |w (DE-576)452353866  |z 9783319226859  |k Non-Electronic 
856 4 0 |u https://doi.org/10.1007/978-3-319-22686-6  |m X:SPRINGER  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 2 |u https://swbplus.bsz-bw.de/bsz455194432cov.jpg  |m V:DE-576  |m X:springer  |q image/jpeg  |v 20160211141307  |3 Cover 
856 4 2 |u https://zbmath.org/?q=an:1331.03009  |m B:ZBM  |v 2021-04-12  |x Verlag  |y Zentralblatt MATH  |3 Inhaltstext 
889 |w (DE-576)455194432 
889 |w (DE-627)1654291382 
912 |a ZDB-2-SOB  |b 2016 
912 |a ZDB-2-SXMS  |b 2016 
912 |a ZDB-2-SMA  |b 2016 
912 |a ZDB-2-SEB  |b 2016 
935 |h GBV  |i ExPruef 
951 |a BO 
ELC |a 1 
OAS |a 1 
ORI |a SA-MARC-ixtheo_oa001.raw