Mathematics and the real world

In this article the initial discussion of the untenability of the distinction between “pure” and “applied" mathematics is followed by looking at alternative approaches regarding the relationship between mathematics and the “real world” - with intuitionism and Platonism representing the two oppo...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Strauss, D. F. M. (Autor)
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Verificar disponibilidad: HBZ Gateway
Journals Online & Print:
Gargar...
Interlibrary Loan:Interlibrary Loan for the Fachinformationsdienste (Specialized Information Services in Germany)
Publicado: 2000
En: Koers
Año: 2000, Volumen: 65, Número: 1, Páginas: 95-121
Otras palabras clave:B applied mathematics
B Infinity
B Platonism
B Intuitionism
Acceso en línea: Volltext (kostenfrei)
Volltext (kostenfrei)
Descripción
Sumario:In this article the initial discussion of the untenability of the distinction between “pure” and “applied" mathematics is followed by looking at alternative approaches regarding the relationship between mathematics and the “real world” - with intuitionism and Platonism representing the two opposite positions. The notions of infinity as well as the totality character of spatial continuity (and its implied infinite divisibility) turned out to occupy a central position in this context. In the final section brief attention is given - against the background of some perspectives on the history of mathematics - to an alternative approach in which both the uniqueness and the mutual irreducibility of number and space are conjectured.
ISSN:2304-8557
Obras secundarias:Enthalten in: Koers
Persistent identifiers:DOI: 10.4102/koers.v65i1.466