Exploring the Use of Machine Learning to Automate the Qualitative Coding of Church-related Tweets
This article builds on previous research around the exploration of the content of church-related tweets. It does so by exploring whether the qualitative thematic coding of such tweets can, in part, be automated by the use of machine learning. It compares three supervised machine learning algorithms...
Authors: | ; ; |
---|---|
Format: | Electronic Article |
Language: | English |
Check availability: | HBZ Gateway |
Journals Online & Print: | |
Fernleihe: | Fernleihe für die Fachinformationsdienste |
Published: |
Equinox
[2019]
|
In: |
Fieldwork in religion
Year: 2019, Volume: 14, Issue: 2, Pages: 140-159 |
Standardized Subjects / Keyword chains: | B
Church
/ Online community
/ Twitter (Softwareplattform)
/ New media
/ Artificial intelligence
/ Algorithms
/ Communication
/ Quality improvement
|
IxTheo Classification: | CB Christian life; spirituality CD Christianity and Culture CF Christianity and Science FD Contextual theology |
Further subjects: | B
social media research
B digital theology B sociology of religion B Machine Learning |
Online Access: |
Volltext (doi) |
MARC
LEADER | 00000caa a22000002 4500 | ||
---|---|---|---|
001 | 169921459X | ||
003 | DE-627 | ||
005 | 20200828152244.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200602s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1558/firn.40610 |2 doi | |
035 | |a (DE-627)169921459X | ||
035 | |a (DE-599)KXP169921459X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
084 | |a 0 |2 ssgn | ||
100 | 1 | |a Cooper, Anthony-Paul |e VerfasserIn |4 aut | |
109 | |a Cooper, Anthony-Paul | ||
245 | 1 | 0 | |a Exploring the Use of Machine Learning to Automate the Qualitative Coding of Church-related Tweets |
264 | 1 | |c [2019] | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This article builds on previous research around the exploration of the content of church-related tweets. It does so by exploring whether the qualitative thematic coding of such tweets can, in part, be automated by the use of machine learning. It compares three supervised machine learning algorithms to understand how useful each algorithm is at a classification task, based on a dataset of human-coded church-related tweets. The study finds that one such algorithm, Naïve-Bayes, performs better than the other algorithms considered, returning Precision, Recall and F-measure values which each exceed an acceptable threshold of 70%. This has far-reaching consequences at a time where the high volume of social media data, in this case, Twitter data, means that the resource-intensity of manual coding approaches can act as a barrier to understanding how the online community interacts with, and talks about, church. The findings presented in this article offer a way forward for scholars of digital theology to better understand the content of online church discourse. | ||
650 | 4 | |a digital theology | |
650 | 4 | |a Machine Learning | |
650 | 4 | |a sociology of religion | |
650 | 4 | |a social media research | |
652 | |a CB:CD:CF:FD | ||
689 | 0 | 0 | |d s |0 (DE-588)4030702-5 |0 (DE-627)104731745 |0 (DE-576)208988742 |2 gnd |a Kirche |
689 | 0 | 1 | |d s |0 (DE-588)1071012568 |0 (DE-627)825507987 |0 (DE-576)43287920X |2 gnd |a Online-Community |
689 | 0 | 2 | |d s |0 (DE-588)7660487-1 |0 (DE-627)601121228 |0 (DE-576)307189015 |2 gnd |a Twitter |g Softwareplattform |
689 | 0 | 3 | |d s |0 (DE-588)4196910-8 |0 (DE-627)104456221 |0 (DE-576)210111151 |2 gnd |a Neue Medien |
689 | 0 | 4 | |d s |0 (DE-588)4033447-8 |0 (DE-627)106257188 |0 (DE-576)209002050 |2 gnd |a Künstliche Intelligenz |
689 | 0 | 5 | |d s |0 (DE-588)4001183-5 |0 (DE-627)106398164 |0 (DE-576)20884161X |2 gnd |a Algorithmus |
689 | 0 | 6 | |d s |0 (DE-588)4031883-7 |0 (DE-627)10454869X |0 (DE-576)208994653 |2 gnd |a Kommunikation |
689 | 0 | 7 | |d s |0 (DE-588)4176587-4 |0 (DE-627)105355372 |0 (DE-576)209971789 |2 gnd |a Qualitätssteigerung |
689 | 0 | |5 (DE-627) | |
700 | 1 | |a Kolog, Emmanuel Awuni |e VerfasserIn |4 aut | |
700 | 1 | |a Sutinen, Erkki |e VerfasserIn |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Fieldwork in religion |d London : Equinox, 2005 |g 14(2019), 2, Seite 140-159 |h Online-Ressource |w (DE-627)514238887 |w (DE-600)2241153-7 |w (DE-576)325342784 |x 1743-0623 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2019 |g number:2 |g pages:140-159 |
856 | |u https://doi.org/10.1558/firn.40610 |x doi |3 Volltext | ||
951 | |a AR | ||
ELC | |a 1 | ||
ITA | |a 1 |t 1 | ||
LOK | |0 000 xxxxxcx a22 zn 4500 | ||
LOK | |0 001 3681642516 | ||
LOK | |0 003 DE-627 | ||
LOK | |0 004 169921459X | ||
LOK | |0 005 20200828152244 | ||
LOK | |0 008 200602||||||||||||||||ger||||||| | ||
LOK | |0 040 |a DE-Tue135 |c DE-627 |d DE-Tue135 | ||
LOK | |0 092 |o n | ||
LOK | |0 852 |a DE-Tue135 | ||
LOK | |0 852 1 |9 00 | ||
LOK | |0 935 |a ixzs |a ixzo | ||
LOK | |0 936ln |0 1442044071 |a FD | ||
LOK | |0 936ln |0 1442043768 |a CB | ||
LOK | |0 936ln |0 1442043857 |a CD | ||
LOK | |0 936ln |0 144204389X |a CF | ||
ORI | |a SA-MARC-ixtheoa001.raw | ||
REL | |a 1 | ||
STA | 0 | 0 | |a Algorithms,Computer algorithms,Artificial intelligence,Artificial intelligence,Church,Church,Church,Church in literature,Communication,Communication,Communication process,Information process,Communication in art,New media,Digital media,Online community,Quality improvement,Qualitative improvement |
STB | 0 | 0 | |a Algorithme,Amélioration qualitative,Communauté virtuelle,Communication,Communication,Intelligence artificielle,Intelligence artificielle,Nouveaux médias,Église,Église |
STC | 0 | 0 | |a Algoritmo,Algoritmos,Aumento de la cualidad,Comunicación,Comunicación,Comunidad en línea,Iglesia,Iglesia,Inteligencia artificial,Inteligencia artificial,Nuevos medios digitales |
STD | 0 | 0 | |a Algoritmo,Chiesa,Chiesa,Comunicazione,Comunicazione,Comunità virtuale,Comunità online,Comunità online,Incremento della qualità,Intelligenza artificiale,Intelligenza artificiale,Nuovi media,Media digitali,Media digitali |
STE | 0 | 0 | |a 人工智能,人工智能,机器智能,机器智能,教会,教会,新媒体,联系,通信,沟通,质量提高,质量改善,质量改进 |
STF | 0 | 0 | |a 人工智能,人工智能,機器智能,機器智能,教會,教會,新媒體,算法,聯繫,通信,溝通,質量提高,品質改善,質量改進 |
STG | 0 | 0 | |a Algoritmo,Aumento da qualidade,Comunicação,Comunicação,Comunidade online,Igreja,Igreja,Inteligência artificial,Inteligência artificial,Novos meios digitais |
STH | 0 | 0 | |a Алгоритм,Интернет-сообщество,Искусственный интеллект (мотив),Искусственный интеллект,Новые медиа,Общение (мотив),Общение,Повышение качества,Церковь (мотив),Церковь |
STI | 0 | 0 | |a Online κοινότητα,Αλγόριθμος,Βελτίωση ποιότητας,Εκκλησία (μοτίβο),Εκκλησία,Επικοινωνία (μοτίβο),Επικοινωνία,Νέα Μέσα,Ψηφιακά Μέσα,Τεχνητή νοημοσύνη (μοτίβο),Τεχνητή νοημοσύνη |
SUB | |a REL | ||
SYG | 0 | 0 | |a Church,Christliche Kirche,Christliche Kirche , Notre-Dame-de-l'Assomption,Ste-Trinité,Sainte-Trinité,Rosenberg-Kirche , Onlinecommunity,Online community,Onlinegemeinde,Virtuelle Gemeinschaft,Soziales Netzwerk , X , Digitale Medien , Artificial intelligence,Computerunterstützte Intelligenz,Maschinelle Intelligenz,KI , Algorithmen , Kommunikationsprozess,Informationsprozess , Qualitätsverbesserung,Qualität,Qualitätsentwicklung |