The Blessed Virgin and the Two Time-Series: Hervaeus Natalis and Durand of St. Pourçain on Limit Decision
This paper examines the accounts of limit decision advanced by Hervaeus Natalis and Durand of St. Pourçain in their respective discussions of the sanctification of the Blessed Virgin. Hervaeus and Durand argue, against Aristotle, that the temporal limits of certain changes, including Mary’s sanctifi...
| 1. VerfasserIn: | |
|---|---|
| Medienart: | Elektronisch Aufsatz |
| Sprache: | Englisch |
| Verfügbarkeit prüfen: | HBZ Gateway |
| Fernleihe: | Fernleihe für die Fachinformationsdienste |
| Veröffentlicht: |
2017
|
| In: |
Vivarium
Jahr: 2017, Band: 55, Heft: 1/3, Seiten: 36-59 |
| IxTheo Notationen: | KAE Kirchengeschichte 900-1300; Hochmittelalter KAF Kirchengeschichte 1300-1500; Spätmittelalter NBJ Mariologie VA Philosophie |
| weitere Schlagwörter: | B
Hervaeus Natalis
Durand of St. Pourçain
Aristotle
limit decision
sanctification
the Blessed Virgin
|
| Online-Zugang: |
Volltext (Verlag) |
MARC
| LEADER | 00000caa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 1582477612 | ||
| 003 | DE-627 | ||
| 005 | 20211015093958.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 181031s2017 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1163/15685349-12341332 |2 doi | |
| 035 | |a (DE-627)1582477612 | ||
| 035 | |a (DE-576)512477612 | ||
| 035 | |a (DE-599)BSZ512477612 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
| 041 | |a eng | ||
| 084 | |a 1 |2 ssgn | ||
| 100 | 1 | |0 (DE-588)1084802201 |0 (DE-627)848725492 |0 (DE-576)456845941 |4 aut |a Löwe, Can Laurens | |
| 109 | |a Löwe, Can Laurens |a Loewe, Can Laurens |a Loewe, Can L. | ||
| 245 | 1 | 0 | |a The Blessed Virgin and the Two Time-Series: Hervaeus Natalis and Durand of St. Pourçain on Limit Decision |
| 264 | 1 | |c 2017 | |
| 300 | |a Online-Ressource | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 520 | |a This paper examines the accounts of limit decision advanced by Hervaeus Natalis and Durand of St. Pourçain in their respective discussions of the sanctification of the Blessed Virgin. Hervaeus and Durand argue, against Aristotle, that the temporal limits of certain changes, including Mary’s sanctification, should be assigned in discrete rather than continuous time. The paper first considers Hervaeus’ discussion of limit decision and argues that, for Hervaeus, a solution of temporal limits in terms of discrete time can coexist with an Aristotelian continuous time solution because Hervaeus takes continuous and discrete time to be two non-intersecting, but correlated time-series. The paper next examines Durand’s account of limit decision and argues that Durand rejects Hervaeus’ correlation assumption as well as Aristotle’s continuous time solution. | ||
| 601 | |a Hervaeus Natalis | ||
| 650 | 4 | |a Hervaeus Natalis |x Durand of St. Pourçain |x Aristotle |x limit decision |x sanctification |x the Blessed Virgin | |
| 652 | |a KAE:KAF:NBJ:VA | ||
| 773 | 0 | 8 | |i In |t Vivarium |d Leiden [u.a.] : Brill, 1963 |g 55(2017), 1/3, Seite 36-59 |h Online-Ressource |w (DE-627)325567093 |w (DE-600)2036954-2 |w (DE-576)094145016 |x 1568-5349 |7 nnas |
| 773 | 1 | 8 | |g volume:55 |g year:2017 |g number:1/3 |g pages:36-59 |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1163/15685349-12341332 |x Verlag |3 Volltext |7 1 |
| 935 | |a mteo | ||
| 951 | |a AR | ||
| ELC | |a 1 | ||
| ITA | |a 1 |t 1 | ||
| LOK | |0 000 xxxxxcx a22 zn 4500 | ||
| LOK | |0 001 3030161366 | ||
| LOK | |0 003 DE-627 | ||
| LOK | |0 004 1582477612 | ||
| LOK | |0 005 20211015093958 | ||
| LOK | |0 008 181031||||||||||||||||ger||||||| | ||
| LOK | |0 040 |a DE-Tue135 |c DE-627 |d DE-Tue135 | ||
| LOK | |0 092 |o n | ||
| LOK | |0 852 |a DE-Tue135 | ||
| LOK | |0 852 1 |9 00 | ||
| LOK | |0 935 |a bril | ||
| LOK | |0 936ln |0 1442044535 |a KAF | ||
| LOK | |0 936ln |0 1442044462 |a KAE | ||
| LOK | |0 936ln |0 1442052244 |a NBJ | ||
| LOK | |0 936ln |0 1442053844 |a VA | ||
| LOK | |0 939 |a 31-10-18 |b l01 | ||
| ORI | |a SA-MARC-ixtheoa001.raw | ||
| REL | |a 1 | ||
| SUB | |a REL | ||